Combining and comparing clustering and layout algorithms

Alistair Morrison, Greg Ross and Matthew Chalmers

Department of Computing Science, University of Glasgow

http://www.dcs.gla.ac.uk

{morrisaj, gr, matthew} @dcs.gla.ac.uk

Abstract

Many clustering and layout techniques have been used for structuring and visualising complex data. This paper
explores a number of combinations and variants of sampling, K-means clustering and spring models in making
such layouts, using Chalmers’ 1996 linear iteration time spring model as a benchmark. This algorithm runs in
O(N’) time overall, but the run times for the new algorithms we describe reach O(NVN). We compare their layout
quality and run times in laying out two collections of synthetic data, drawing samples from each collection of sizes
ranging from 1000 to 20000. Based on these comparisons, we outline a number of avenues for future work that
may further reduce time complexity and improve layout quality.

1. Introduction

The visualisation of multivariate abstract data is a
fundamental task in many fields. From bioinformatics to
the financial sector, there is a great deal of interest in
data that have no inherent mapping to a 2D or 3D space.
Graphical means of conveying such information are
subsequently relied upon to provide insight into patterns
and relationships.

A fundamental requirement of the production of such
a representation is the means to generate layouts of the
multivariate data in a lower dimensional space. The
created visualisation should preserve relationships
existing within the data and should be comprehensible
enough to allow the user to perceive such patterns.

Multidimensional scaling (MDS) is one means of
mapping a data set onto a smaller number of dimensions,
so that it may be visualised in a more manageable form.
The resulting presentation does not contain the g¢-
dimensional Cartesian space directly, but rather a p-
dimensional embedding (where p < ¢g) of N objects
where high-dimensional inter-object relationships are
approximated in the low-dimensional space. Showing
these relationships is primary, and manipulation or
combination of dimensions is only a means to this end.

Our work focuses on creating 2-dimensional
representations.

Although effective in generating layouts, standard
MDS functions by means of eigenvector analysis of an N
x N matrix, producing a layout based on a linear
combination of dimensions. This results in an O(N°)
procedure for generating layouts. As well as this cubic
complexity, it should be noted that the computation
would have to be performed again in its entirety if the
data set was even slightly altered’. Iterative techniques
overcome these difficulties. It is possible to calculate a
measure of the quality of a layout: how well the visual
representation conveys relationships present in the initial
data. This can be treated as a loss or error function, which
is to be iteratively minimised to gain an optimal
arrangement. In 1996, Chalmers* presented an iterative
MDS algorithm capable of producing a representative
layout in time proportional to O(N?). Additionally, by
removing the necessity of creating a layout based on a
linear combination of dimensions, the system is freer to
find an optimum layout.

We describe work on the combination of several
iterative layout techniques that generate a layout in sub-
quadratic time. An example of such a layout, and our tool
for interacting with it, is shown in Figure 1 (below). This

2 Morrison, Ross and Chalmers / Combining and comparing clustering algorithms

L]

Iirl.'-rl- resmanan

| Py b R

A T |I Cmp s (b

| e .

-
|
b L | T

C LR

;

e =

Nmpegipes
o X

fay e Sl

nm m

=it = E L

Figure 1. An example layout close to completion in our FSMvis visualisation tool is shown top right. Other components of the tool
offer control over spring model parameters (bottom right) and histograms (left) of individual dimensions or attributes allow filtering
and selection. The layout is of 20000 points sampled from a 3D S’ shape: one of the test sets described in Section 4. Points in the
layout are coloured according to their X—coordinates in the original 3D shape. Although the late stages of processing may resolve
some of the folds and distortions, the set was chosen because it is inherently impossible to lay out perfectly in 2D.

paper will not focus on the tool in terms of the
interaction with the layout, but on new layout algorithms.
The following section describes the general approach to
iterative layout algorithms that we have been following,
namely spring models. A later section outlines the
alternatives and refinements we have been working on,
and then we report the results of experiments comparing
new techniques with Chalmers’ 1996 algorithm. As we
reflect on these results, we find a number of avenues of
future research open to us. We outline some of these
before concluding the paper.

2. Spring models

Spring models or force—directed placement® algorithms
are amongst the simplest MDS algorithms. Since the goal
of MDS is to create a representation that preserves

relationships within a set of objects, spring models
determine where a point is laid out based on inter—object
similarities. A high—dimensional dissimilarity is
calculated for pairs of objects, and then approximated as
closely as possible in the lower—dimensional space of the
layout. The latter is usually measured as Euclidean
distance.

Simulations of physical forces are used to drive the
layout process. Each pair of objects is considered to have
a spring, the ends of which are attached to the two points.
The relaxed spring length or ‘rest distance’ is the ideal
proximity of the two objects, i.e. their high-dimensional
distance or dissimilarity. Similar objects too far apart are
pulled together, and dissimilar objects too close together
are pushed apart. The final layout produced by the system
will reflect the spring system in equilibrium. Since a

Morrison, Ross and Chalmers / Combining and comparing clustering algorithms 3

spring is simulated between every pair of objects,
Vo(N*-N) springs are considered.

The system maintains three properties for each
object, namely position, velocity and force. At each
iteration, a force calculation must be performed on each
object. The magnitude of the force exacted on an object i
by another object j at any time during the run will be
proportional to:

| highDimensionalDistance(i,j) — layoutDistance(i,j) |

This calculation must be performed for / < j <N (j Z1i)
in order to produce the overall force acting on i. Object
i's force is then used to update its velocity, which in turn
is used in updating the object’s position in the layout.

Note that (N-1) force calculations must be performed
in each iteration of the spring model for each of N
objects. The number of iterations required to produce a
stable layout is commonly proportional to the size of the
data set, resulting in an algorithm that is O(N?) overall.
The problems arise due to the requirement of N(N-1)
pairwise interactions at each step. This is analogous to
the well-known N-body problem in computational
physics.

2.1 The 96 Algorithm

The technique presented by Chalmers in 1996 employs
caching and stochastic sampling to perform each
iteration of a spring model in linear time, thus permitting
the construction of a stable layout in O(N°) time overall.

This is achieved by reducing the number of force
calculations performed for each object during an
iteration. Two distinct sets are used for each object i. The
first set V is stored as a list of ‘neighbours’ of i, i.e. the
objects so far found to have low high—dimensional
distance, and thus expected to be laid out nearby in 2D
space. The second set, S, is reconstructed in each
iteration, and contains a random selection of objects not
already in the neighbour set. Random objects are selected
and each is tested to determine whether it has a high—
dimensional distance lower than one or more of the
current neighbours. If this is the case, the new object is
swapped in to the neighbour set. If not, the object is
added to S. In this manner, the neighbour set becomes
more representative of the most similar objects to i over
successive iterations. Once both sets are constructed,
forces are calculated only between object i and each of
the members of the two sets.

The number of force calculations required during one
iteration of the algorithm has therefore been reduced
from N(N-1) to N(Vmax + Smax) where Vmax is the
maximum size of the /" and Smax is the maximum size of
S. As the two set sizes are bounded by a constant, the

computational cost of an iteration is linear with respect to
N. Evaluation of this technique indicated that layout
quality is still good despite the reduction in force
calculations. Indeed, even constant values as low as 5 and
10 for Vmax and Smax respectively yielded favourable
results.

In terms of computational time, this is the best known
model using only springs. It is therefore this algorithm
that we will use as a basis of comparison with new
techniques.

3. Other Techniquesand Tools

This section outlines a number of techniques for
visualisation and clustering. Apart from older and more
established techniques, we add several methods to a
selection or toolbox of techniques we later combine and
compare.

3.1 Self-organising featur e maps

Kohonen's self-organising feature map (SOM)" is an
unsupervised learning algorithm applied to the
classification of information. A representative training set
of feature vectors (or patterns) is presented to an artificial
neural network. A grid of neurons, sometimes called
reference vectors (which are of equal dimensionality to
the feature vectors), compete to win the allocation of a
feature vector. Local adjustment of reference vectors
around each winning neuron gradually produces a
topologically ordered structure with each neuron
associated with and representative of a cluster within the
training set. The grid also provides a useful visualisation
tool for inspecting the data set and is often split into
concept areas™ to enhance the interpretation of the
clusters. While not showing as much topological
structure or detail as spring models, SOMs are often
quicker to make and scale to larger data sets.

3.2 K-means

K-means, also known as MacQueen’s algorithm'®, is a
well-known iterative centroid-based divisive clustering
algorithm. The algorithm starts by selecting a random
sample (of size k) from the data set, to approximate the
centroids of k clusters. Note that we assume here that the
input objects consist of vectors of continuous values.
Each object in the data set is then compared to each of
the centroids, and assigned to a cluster so as to minimise
distances in high dimensional space. Once all of the input
objects from the data set have been allocated, each
centroid is re-computed to reflect the average of its
cluster’s members. The clustering then is repeated and
the centroids are again updated. This iterative process
terminates when the algorithm has converged to a
minimum and no cluster members change membership.

4 Morrison, Ross and Chalmers / Combining and comparing clustering algorithms

The main advantage of K-means is that its complexity
and time complexity is reasonable'>. The time
complexity is O(nkl), where / is the maximum number of
iterations, and the space complexity is O(n + k). One
drawback of the K-means algorithm is that it assumes
that the clusters it is trying to find lie in a spherical
Gaussian distribution®. This means that although the
algorithm will always converge'’, it may easily converge
to a local minimum. This is compounded by the way that
clusters may vary in size and K-means is very sensitive
to the initial choice of centroids'>. This initial decision
can determine how well the algorithm converges in terms
of local or global minima.

3.3 Hybrid approachesto clustering and layout

Some clustering algorithms effectively tackle the areas in
which others are weaker, and a number of researchers
have explored combinations of algorithms.

In Su et al'® K-means was employed to gather
representative classes or clusters from the data set. These
representative centroids were then organised into a
discrete N by N (or more accurately a vk by vk) grid.
The cells in this array preserve some of the relationships
of the clusters, albeit distorted because of the discrete
grid structure. The authors hoped to achieve a
topologically ordered structure from which the true
structure of the data set could be derived. This is exactly
in—line with the purpose of Kohonen’s SOM, and indeed
the SOM is used to fine tune the resulting array if the
ordering turns out not to be as good as desired. Su et al
suggest that this variant SOM approach is much faster
than the traditional on-line SOM.

In a 1998 paper, Brodbeck and Girardin® combine a
spring model algorithm and a SOM. As their example
figures showed, they were able to produce layouts
strikingly similar to but far more quickly than a full
spring model. Brodbeck and Girardin also describe how
they created their own variant of the SOM to handle the
classification of categorical (nominal) data through the
use of dynamically growing dictionaries.

The SOM finds representative clusters or neurons,
and then a spring model is used to layout these neurons
without the distortion imposed by the discrete grid of the
SOM. Individual members of each cluster, or of only
user—selected clusters, can be added to the layout via
interpolation. The accuracy of the interpolation is to a
large extent determined by the constants in their
technique (illustrated in Figure 2):

1. Find the closest neuron within a random subset
chosen from all of the neurons.

2. Define a circle round that neuron (in 2D) of radius
equal to the high—dimensional distance between the
two objects.

3. For a fixed number of random positions on the
circumference of the circle, compute the sum of
differences between the actual distance and desired
(high dimensional) distance of the random position to
each of the sampled neurons.

4. Put the cluster member where the sum from step 3 is
lowest.

5. Determine the aggregate force vector between this
point and the random sample of neurons.

6. Select a constant number of random positions along
this vector and, for each, determine the minimum sum
of differences (as in step 3) to the sample of neurons.
Put the cluster member in this minimal position.

7. Repeat steps 5 and 6 a constant number of times to
refine the placement.

As the sizes of all the random samples in the above
description can be kept as constants, the interpolation
may be achieved with a complexity linear with respect to
N. The real saving of this method, however, is in the
spring model. As only centroids are involved, a far
smaller data set is presented to the spring model and, as
such, the algorithm will run more quickly. Even though
extra interpolation and SOM stages are required, the
reduction in input size for the O(N°) phase results in a
saving overall.

P ci
Pri

Di

Figure 2. The approximate position of the point p; is found by
initially finding the optimal position p,; on the circumference
of the circle (of radius r from the centroid p). The aggregate
force vector is then added to this position p; to move it closer
to pi.

3.4 Combining Brodbeck & Girardin with K-means

In this section we describe modifications to the Brodbeck
& Girardin algorithm. Instead of a SOM, we are
exploring K-means as the pre-clustering method. K-
means exhibits a lower space and time complexity than
the SOM'™. K-means finds reasonably good

Morrison, Ross and Chalmers / Combining and comparing clustering algorithms 5

representative points within the data set to facilitate
further stages in the layout process.

Based on the Buckshot algorithm’ we obtain a quick
and relatively promising variety of initial centroids.
Buckshot works by selecting a random sample of the
data set, of size VN, and then applying a clustering
routine to that subset, such as group average
agglomerative clustering. Once clustering is complete,
the centroids are computed and the remainder of the data
set is assigned to the closest clusters. In our
implementation, we choose YN random samples from the
data set and then apply K-means, using this random
sample as the initial seed for the clustering. This gives a
complexity of O(INVN) for this initial clustering stage,
(where [is the number of iterations until K-means
convergence).

As before, a spring model is applied to provide a
layout of the clusters. We apply the 1996 spring model to
the K-means centroids and then interpolate the rest of the
data set. A number of criteria are possible for deciding
when to stop the spring model. The two main
differentials we use are the difference in velocity in the
system between iterations, and the difference in system
stress. Stress is based on the sum-of-squared errors of
inter-object distances, and can be applied to any
algorithms minimising such a metric, e.g., squared error
criterion algorithms such as K-means. Here we define
stress as below®, where d; denotes the desired, high
dimensional distance between objects j and i, and gj
denotes the low—dimensional or layout distance:

2
sk.-g)
287

The interpolation stage in the incremental approach
could commence if either the stress or velocity
differential falls below a constant scalar threshold. In
practice, we based this on velocity.

Stress =

The interpolation step has also been modified. We
use a binary search on the closest quadrant of the circle
to find a good position relative to the layout. As before,
we find the direction of the aggregate force vector
between this point and the layout samples. Then, rather
than selecting a position along this vector as before, we
add the non—scaled vector to the position. This is because
we found that improvements were not always found at
Brodbeck & Girardin’s position.

3.5 Combining Brodbeck & Girardin with Sampling

To further explore the use of quick approximations, we
used a simple VN sample of the data set rather than K-
means or a SOM as the initial step. This gives a saving in
complexity from the O(N) of the SOM model to O(VN).

A spring model of this will run in O(VN.VN), i.e. O(N).
Interpolation follows the same pattern as Brodbeck and
Girardin’s original O(N) strategy presented in the
previous section. However, as no ‘parent’ information is
available, an initial pre-processing stage is required. The
remaining (N-VN) elements are compared to each of the
VN samples. A best fit for all points is consequently
calculated in O(NVN) time. This pre-processing stage is
the dominant factor, making the layout O(NVN).

4. Experimental Results

In this section we offer a number of comparisons of three
layout algorithms: Chalmers’ 1996 algorithm, Brodbeck
& Girardin (B&G) with K-means, and B&G with
sampling. We evaluate and compare layout algorithms
based both on the subjective quality when explored in
interactive use on—screen and on objective quantities such
as stress.

Since we are trying to minimise this stress value
within the shortest period of time, we have also been
using a measure of algorithmic efficiency E, combining
mechanical stress and time: £ = [/ ST. This metric
should be used with caution, as stress itself is not
necessarily an indication of the quality of the final
clustering layout: two layouts may have comparable
stress but the layouts themselves may be very different;
lower stress does not necessarily mean a better, more
interpretable layout. We also note that in some
applications where off-line clustering is permissible, time
will not be so important and should therefore not be so
prominent in the efficiency metric. Another concern here
is that stress is not perceived by users as linear.

The visualisation tool used to carry out these
experiments was written in Java SDK 2.1 version 1.3.
Tests were run on a PC with an Intel Pentium 3
~731MHz and 256MB RAM running Microsoft
Windows 2000 Professional.

Two distinct collections of data were selected for the
experiments, each of which synthetically created. The
first collection was created by sampling points from a 2D
structure—the logo for B&G’s company. Reconstructing
this structure should be possible for a good layout
algorithm. By sampling at different frequencies, sets of
10 different cardinalities were created from this ‘logo’
set, from 1000 to 10000 elements. The second collection
was similarly sampled from a band curving in an ‘S’
shape through three dimensions. As may be seen from
Figure 1, the ‘S’ structure is forced to fold in on itself in
certain areas. It is impossible to exactly represent all the
inter-object distances when one less dimension is
available. Again, 10 sets were created, this time from
2000 to 20000.

Morrison, Ross and Chalmers / Combining and comparing clustering algorithms

I!’-

4m

S SEE e

T

o mw EG aE

o Wl e

Sl v
derm 2w e

Figure 3. Run time to completion over different sizes
of ‘logo’ data sets

L& | 5 -

hm-:\-

E
=

- - i -

I sy SISy

= =4 iz k-] L -] = =
S of Uinln vl

Figure 4. Stress of completed layout over different sizes
of ‘logo’ data sets.

oy
. . o o B
E 13 4
]
'
o] 4
1
e '
¥ i
1] [-
i .I
s
oo
%
(1] S -
Y i
AN
e
& T -
el
T -
g R s S N
-] [T [T [T 1 12 14 1 18 2
S ol cum. i

Figure 5. Efficiency for different sizes of ‘logo’ data sets

T |

— L i
S
- Fmd N
&
L
-
=
.__.-"
o
.'---.
-'-.
’ -
1 . ___.-"" -
- -
- _."
L
.a-F-"'df
"
L= -
i LE] ol LL] i iR fa iR i8 [
beoa o mam e e

Faseey WA'T)

Figure 6. Run time to completion for different sizes of ‘S’

data.
' . . - . .
— RS uerm
-
AN
e TN, ey
== k AT TN
; "‘-. P g W
E ¢ A
T I T T T i T TREET] .
B of w1 st

Figure 7. Stress of completed layout over different sizes

of 2-dimensional data

[T

=] '\.\;;-‘

[T LE] L] LE] 1 iy fd
B4 ¥ owm e

Figure 8. Efficiency over different sizes of 3-dimensional

data

Morrison, Ross and Chalmers / Combining and comparing clustering algorithms 7

Synthetic data were chosen in each case so that we could
compare generated layouts and layout processes easily.
With the logo data, we could literally see the letters of
the logo appearing as the process progressed. Other tests
have been performed with real (for example, financial)
data, and much of our ongoing work focuses on such
data, but the resulting layouts are more difficult to
interpret and compare.

Figures 3 and 4 compare of the stress and time to data set
size of the 96, sampling B&G and K-means B&G
algorithms. As expected, the *96 algorithm takes longer
to converge than both the combined algorithms, over all
of the data set sizes. We also see that the sampling B&G
and K-means B&G exhibit comparable times. For the
smaller data sets, K-means appears slightly faster. This
is because the K-means algorithm is extremely quick in
converging. However, as the size of the data set
increases, the cost of using K-means would seem to
outweigh its benefit over simple sampling.

The stress recorded for the 96 algorithm is significantly
higher than the others. This is because, as the 96
algorithm proceeds, the stress tends to fall sharply and
then level out for a considerable time before the layout
becomes stable. The stress levels exhibited by the B&G
algorithms are lower for the logo set because the
interpolation can achieve near-optimal positioning of the
points in two dimensions. To enhance this, the 96
algorithm is finally run on this interpolated structure for
a small constant number of iterations to refine the layout
and minimise the stress.

As Figure 5 shows, both of the interpolation algorithms
are deemed by our metric to be more efficient than the
’96 algorithm. This graph also seems to illustrate that
the K-means version would be the optimal choice for
smaller data sets, with this distinction becoming less
clear as data size increases.

A similar reduction in computational over the ’96
algorithm time may be observed for the second data set
(see Figure 6). Indeed, for the set of 20000 data items,
over a third of the total running time may be saved
through the use of the B&G sampling algorithm.

Although the B&G K-means method takes longer to run
than B&G sampling, Figure 7 illustrates that it it does
produce lower stress. In general, the stress levels
calculated from layouts of the ‘S’ set are significantly
higher than those obtained from the logo set, as would be
expected with this inherently difficult layout problem.

From Figure 8, we can again note that K-means appears
to be the most efficient method for smaller data sets,
while the sampling model becomes the best choice as
cardinality increases. Efficiency appears to be much
lower in all cases than that calculated from experiments

on the first data set. This is again a consequence of
constraints on how well 3 dimensional data can be
represented in a 2 dimensional display. It should be
noted, however, that for data set of 20000 elements, the
sampling B&G method was roughly twice as efficient as
the *96 algorithm.

To illustrate the degree of improvement offered by
our methods over standard MDS techniques, two
experiments were performed where the full O(N°) spring
model was run on sets of the logo data of size 1000 and
2000 items. The smaller of these data sets was laid out in
1407 seconds (almost 24 minutes) compared to the 21
seconds average over the 10 runs of the B&G K-means
model. The data set of 2000 items took 7326 seconds
(over two hours) to converge, as compared to 43 seconds
average time using B&G K-means. Stress was much
higher in the cubic time model (e.g. 0.2) compared to the
B&G variants that finished with stresses of roughly
0.001. It seems as if the velocity threshold was reached
before a good layout was made, perhaps because the
higher number of springs made the model much ‘stiffer’
overall.

5. Futurework

Our experiments have suggested a variety of possible
areas of future work to us. In this section we outline a
number of these and their possible benefits.

5.1 Hashing

In section 3.5, a model was presented where the
bottleneck in terms of computational time was the
assignment of remaining data points to a ‘parent’ sample.
This was a precursor to interpolation using the layout of
samples. This currently requires O(NVN) time (worst-
case) because of a brute—force linear search for each
object though the samples. This is an example of a
nearest-neighbour search, and it may be possible to
employ a hashing function at this stage to reduce
complexity. Several attempts have been made to use
hashing functions to perform similarity search in high
dimensions. Indyk et al. proposed a technique of locality-
sensitive hashing (LSH)"' to aid the retrieval of a data
element’s approximate nearest neighbours. This approach
is based upon the assumption that the computation
required to determine the absolute nearest neighbour is
often unnecessary if a good approximation will suffice
and if such a value can be found at a fraction of the cost
of the full search.

Using such a method would reduce lookup to sub—
linear time, but a pre—processing phase is required to
place all the n points into each of / hash tables, which
would require n/ operations. In our favour, this is being
performed on the sample rather than the full data set, so n
= \N. Also, it has been shown’ that a constant number of

8 Morrison, Ross and Chalmers / Combining and comparing clustering algorithms

hash tables (regardless of data size) can result in high
probability of finding very close neighbours. We
therefore would have an O(NN) pre-processing stage and
a lookup technique bounded by /, a constant, resulting in
an interpolation algorithm requiring (WN) + I(N-VN)
operations i.e. O(N) overall.

This is an area that certainly seems worth exploring.
If our results should indicate that a good approximation
of a nearest neighbour can be found in sub-linear time,
the process could possibly be applied to other areas. For
example, it would perhaps be possible to select an object
of interest from an unordered space and be presented
with similar elements from the data set, or the techniques
could be included within the spring model domain to
help identify neighbour sets. This could lead us to more
fundamentally rethink the spring model algorithm.

5.2 Pivots

These algorithms are predominantly used in nearest
neighbour searches (NNS) and in indexing applications.
The idea behind them is to select a number of points
(pivots) in the dataset and store the distance from each of
these points to every other point in the set. Then, using
the triangular inequality, a discarding rule can be applied
so that the number of distance calculations to find close
objects to the query is reduced.

The idea has been described as follows®: given a
point x in the data set and a pivot p, we can store the
distance between these two points as d(x, p). Now, given
a query ¢, we can define the distance to the pivot d(g, p).
It is now possible to use the triangular inequality to
discard the distance calculation from the query to a point
where |d(q, p) — d(x, p)| > r. Here r is the predefined
maximum distance from q to which an object may be
considered close.

We believe that this method could be used to
improve the *96 algorithm. A pivot-based approach could
speed up the operation of building the neighbour sets
used in the force calculations.

5.3 Dynamically Resizing V+S

We asserted earlier that it was possible to create good
layouts using values of 5 and 10 respectively for the sizes
of the neighbour and random sample sets. To minimise
iteration time, it is obviously advisable to set these values
as low as possible. However, we theorise that under
certain conditions it may be advisable to alter the size of
the sets dynamically during program execution. For
instance, if an analysis of stress values indicated little
change over a certain period of iterations, it could be the
case that either the layout has converged to its stable
state, or that it has become stuck at a locally optimal
layout. By increasing the size of the set of neighbours,

each data point will receive greater force pulling it
towards its rightful position. This will increase the
probability of the layout breaking out of this state and
move towards an overall minimum.

5.4 Batch-SOM algorithm

Earlier in this paper we described our implementation of
the K-means algorithm in order to supplant the
complexity of the SOM as a pre-clustering step in the
modified algorithm of Brodbeck and Girardin. However,
Heskes et al'® describe the implementation of a variant
SOM exploiting a batch map principle where the weights
in the competitive layer are updated at the end of each
algorithmic epoch rather than after each input pattern is
presented. It appears that this approach may be superior
to K-means but it is faster than the traditional SOM.

5.5 Proximity Grid

In a recent paper'®, a grid structure is used to determine
whether the topological layout of images is beneficial to
browsing. The algorithms for creating the grid structure
are proposed by Basalaj'. In essence the algorithms have
an MDS routine as their basis and then transform the
continuous layout (inter-object distances) into a discrete
topology similar to the SOM-like array in Su et al'®. Tt is
thought that this discrete layout could be implemented in
a way that uses the output of the modified Brodbeck and
Girardin algorithm to create an alternative SOM where
the topological ordering of the layout is near—optimal,
thus providing a better interface for browsing. We
propose that where the data set is too large for one grid, a
series of nested grids could be used (with the top-level
being the layout of cluster centroids) to present the user
with a semantic zooming function.

5.6 Interpolation

In modifying the interpolation stage in the B&G
algorithm, improvements were to be found in not scaling
the aggregate force vector before adding it to the position
of the interpolation point. It could be that in some cases
the length of this vector should actually be increased, e.g.
by applying a binary search along the [0, 2] interval
scaled force vector, we may find a better position.

6. Conclusion

This paper has presented preliminary experimentation
with a number of combinations and variants of sampling,
clustering and spring models. Our data suggests that we
can improve upon Chalmers’ 1996 algorithm by using the
basic approach of Brodbeck and Girardin, with further
refinements such as the use of sampling and K-means.
These modifications offer run times of O(NVN) and
layouts of low stress, but further experimentation on data
of higher dimensionality and ‘real world” complexity will

Morrison, Ross and Chalmers / Combining and comparing clustering algorithms 9

be necessary before more definitive claims of
improvement can be made.

We also devoted a significant proportion of the paper
to a number of further avenues for research, partly to
show that this area of visualisation offers many
promising lines of work. Techniques such as hashing
suggest that future spring model algorithms may run in
linear time overall and be applicable to large and
complex data sets, but significant development and
testing will have to be done before we can say whether
such potential can be realised.

7. Acknowledgements

We thank Luc Girardin and Dominique Brodbeck for
openness and help with their algorithm and data sets, and
Andrew Didsbury for early work on the B&G algorithm.

8. References

1. Basalaj, W., “Proximity visualisation of abstract
data”, PhD thesis, University of Cambridge
Computer Laboratory (2000).

2. Bradley, P. S., U. M. Fayyad, "Refining Initial
Points for K-Means Clustering", Proceedings of the
Fifteenth International Conf. on Machine Learning,
(1998).

3. Brodbeck, D., L. Girardin, “Combining topological
clustering and multidimensional scaling for
visualising large data sets”, Unpublished paper
(accepted for, but not published in, Proc. IEEE
Information Visualization 1998).

4. Chalmers, M., “A Linear Iteration Time Layout
Algorithm for Visualising High-Dimensional Data”,
Proc IEEE Visualization 96, San Francisco, pp.
127-132 (1996).

5. Chatfield, C., A. J. Collins, Introduction to
Multivariate Analysis, Chapman & Hall, London
(1980).

6. Chavez, E., J. L. Marroquin , G. Navarro, “Fixed
Queries Array: A Fast and Economical Data
Structure for Proximity Searching”, {lem
Multimedia Tools and Applications (MTAP), 14(2),
pp. 113-135, (2001).

7. Cutting, D. R, D. R. Karger, J. O. Pedersen, J. W.
Tukey, “Scatter/Gather: A cluster-based approach to
browsing large document collections”, In
Proceedings of the 15th Annual International
ACM/SIGIR Conference, pp. 318-329, Copenhagen,
(1992).

10.

11.

12.

13.

14.

15.

16.

17.

18.

Fruchterman, T., E. Reingold. Graph drawing by
force-directed placement. Software—Practice and
Experience, 21(11):1129-1164 (1991).

Gionis, A., P Indyk, R., Motwani, “Similarity
Search in High Dimensions via Hashing”,
Proceedings of 25" International Conference on
Very Large Data Bases (1999).

Heskes, T., W. Wiegerinck, “A theoretical
comparison of batch-mode, on-line, cyclic, and
almost cyclic learning”, IEEE Transactions on
Neural Networks, Vol. 7, No. 4 (1996).

Indyk, P., R. Motwani, “Approximate nearest
neighbours — Towards removing the curse of
dimensionality”, Proceedings of SIGMOD 98
(1998).

Jain, A. K., M. N. Murty, P. J. Flynn, “Data
clustering: A Review”, ACM Computing Surveys,
Vol. 31, No. 3 (1999).

Kohonen, T. et al. “Self-organising of a massive
document collection”, I[EEE Transactions on Neural
Networks, Vol. 11, No. 3 (2000).

Lin, X., D. Soergel, G. Marchionini, “A Self-
Organising Semantic Map for Information
Retrieval”, Proc. ACM SIGIR, Chicago, pp. 262—
269 (1991).

MacQueen, J., “Some methods for classification and
analysis of multivariate observations”, Proc. 5"
Berkeley ~ Symposium on Mathematics and
Probability, pp. 281-297 (1967).

Rodden, K., W. Basalaj, D. Sinclair, K. Wood,
“Does organisation by similarity assist image
browsing?”, Proceedings of the SIGCHI on Human
Factors in Computing Systems, pp. 190-197 (2001).

Selim, S.Z., M.A. Ismail, “K-means-type
algorithms: a generalized convergence theorem and
characterization of local optimality”. IEEE Trans.
On Pattern Analysis and Machine Intelligence,
vol.6, n.1, pp.81-86, (1984).

Su, M.-C., H.-T. Chang, “Fast Self-Organizing
Feature Map Algorithm”, [EEE Transactions on
Neural Networks, Vol. 11, No. 3, p. 721 (2000).

	Combining and comparing clustering and layout algorithms
	
	1

	1. Introduction
	3. Other Techniques and Tools
	3.1 Self-organising feature maps
	3.2 K-means
	3.4 Combining Brodbeck & Girardin with K-means
	3.5 Combining Brodbeck & Girardin with Sampling

	4. Experimental Results
	5. Future work
	5.1 Hashing
	5.2 Pivots

	5.3 Dynamically Resizing V+S
	5.6 Interpolation

	6. Conclusion
	7. Acknowledgements
	8. References

