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Abstract 

 
Visualisation systems consisting of a set of 

components through which data and interaction 
commands flow have been explored by a number of 
researchers. Such hybrid and multistage algorithms can 
be used to reduce overall computation time, and to 
provide views of the data that show intermediate results 
and the outputs of complementary algorithms. In this 
paper we present work on expanding the range and 
variety of such components, with two new techniques for 
analysing and controlling the performance of 
visualisation processes. While the techniques presented 
are quite different, they are unified within HIVE: a 
visualisation system based upon a data-flow model and 
visual programming. Embodied within this system is a 
framework for weaving together our visualisation 
components to better afford insight into data and also 
deepen understanding of the process of the data’s 
visualisation. We describe the new components and offer 
short case studies of their application. We demonstrate 
that both analysts and visualisation designers can 
benefit from a rich set of components and integrated 
tools for profiling performance. 
 
Categories and Subject Descriptors (according to ACM 
CCS): H.5.2 [Information Interfaces and Presentation]: 
User Interfaces; I.3.6 [Computer Graphics]: 
Methodology and Techniques – Interaction techniques 
 
 
1. Introduction 
 

As the field of Information Visualisation has 
matured, its tools and techniques have grown in number 
and variety. Driven by application areas that demand 
interactive exploration of large amounts of data, and 
exploiting advances in the hardware available for 
display, processing and storage, new methods of 
interaction and analysis are continually being added to 
those we have available. Designers and users are faced 

with an increasingly large set of alternatives and 
combinations, and this may be challenging or 
problematic at times. However, this growing set of tools 
also opens up possibilities for complementary views of 
data, and more efficient forms of analysis. Visualisation 
traditionally concerns the richer interpretation of data 
that comes from revealing and exploring data patterns, 
combinations and structures, but there is also a line of 
work that deals with linking and combining tools and 
algorithms so as to support such interpretation. Our 
research aims to contribute to this latter line of work by 
presenting a set of tools for information visualisation 
within a framework for combining them.   

Our recent work builds on hybrid algorithms such as 
those described in [10] and [11], which produce 2D 
scatterplot views of multivariate data, where point 
proximities match as closely as possible those in the 
original high-dimensional space. The presented 
algorithms were hybrid in nature, involving a 
sequentially applied set of techniques that enabled faster 
layout of relatively large data sets. Use of 
computationally expensive algorithms was restricted to a 
subset of the data to form a basis for comparatively 
inexpensive interpolation of the rest of the data. This 
flow of selected subsets of the data through the sequence 
of algorithmic components also influenced the design of 
a graphical environment for selecting and combining 
visualisation components, called HIVE (Hybrid 
Information Visualisation Environment) [12]. HIVE is 
targeted at both the user and the designer of layout 
algorithms and draws upon design approaches such as 
dataflow architectures [15] and visual programming [7]. 
This allows the intuitive depiction of algorithmic and 
display components as nodes in a graph where the arcs 
represent either the flow of data between components, or 
interconnection of components to support brushing and 
linking [1, 2]. It should be noted that visual 
programming is related to algorithm animation and 
program visualisation [3, 14], but the distinction between 
them is that program visualisation is generally applied to 
help understand algorithms and programs that have been 



 

created in a conventional textual programming language. 
However, visual programming entails program creation 
solely by graphical constructs. 

In this paper we report two new HIVE components. 
One component is designed for the data analyst to enrich 
an existing view and one is for the designer of layout 
algorithms, offering facilities for evaluation and 
profiling of visualisation applications built within HIVE. 
The process of dimension reduction is generally 
unsupervised and until recently there have been few 
attempts at providing support for user-intervention [16]. 
The first of our new components is for the user and 
enhances an existing view to provide the user with 
interactive functionality.  This work focuses on force-
directed placement (FDP) algorithms – a family of 
techniques that simulate physical forces acting on 
objects to iteratively produce layouts from an initial 
random starting configuration [5, 6].  We postulate that a 
benefit of iterative solutions is the animation of the 
layout process, which provides feedback on the 
algorithm’s progress.  A traditional shortcoming is that 
the model might occasionally converge to a local 
minimum – a non-globally optimal configuration.  The 
component presented in this paper provides the user with 
the ability to interactively control the addition of energy 
into specific parts of the model to help it break free from 
local minima. We also show how to interactively 
identify such minima. 

While the first new component helps the user to 
intervene in the process of generating a layout of data, 
the second new component is concerned with the 
retrospective analysis of algorithmic performance. 
Algorithms for creating layouts of multidimensional data 
often behave differently given data sets of varying 
dimensionality and cardinality. These algorithms can be 
assessed according to the quality of the layout as well as 
run time. Previous work has shown that hybrid 
algorithms can be efficient in generating layouts. 
However, the hybrid combinations are often determined 
heuristically and therefore the effects of different 
algorithmic stages on run times and layout quality might 
not be well known. To address this and provide the 
algorithm designer with some insight into the effects of 
different hybrid combinations, a new HIVE component 
has been developed to collate the results from batch runs 
of algorithms with different parameter settings and on 
different data sets. The results of these batch runs are, 
themselves, multidimensional data and therefore lend 
themselves to visualisation via the algorithms upon 
which they report. 

We aim to allow the designers and users of 
visualisation algorithms to use such sophisticated 
interaction techniques to assess the performance and 
variability of the algorithms themselves, thus affording 
better understanding of the overall system and insight 
into the data being visualised.  

In the next section of this paper we discuss the 
motivation behind the algorithms we have created and 
describe HIVE, the environment in which they are 
developed, used and profiled. Section 3 provides details 
on the interactive technique for addition of energy during 
the layout process.  In Section 4, we go on to illustrate 
how the algorithm designer can benefit from algorithm 
profiling. Throughout, we provide brief case studies 
outlining the use of the extended version of HIVE to 
analyse data sets and the process of visualisation. We 
offer some suggestions for future work before 
concluding the paper with a summary, and the overall 
direction of our research. 

 
2. Algorithm profiling and HIVE 
 

To gain actionable knowledge from the ever-
increasing sea of data facing analysts, data must be 
represented in such a way that any pertinent information 
is made available as quickly as possible.  It is well 
known that of all the senses, the human visual system 
has by far the greatest bandwidth for communicating 
information to the brain and it is for this reason that data 
are often represented graphically so as to appeal to the 
human’s visual perception [4]. 

The challenge, however, is in graphically depicting 
abstract data. Abstract data are those observations or 
measurements that have no direct physical derivation 
and therefore do not immediately lend themselves to the 
spatial mappings required for visual rendering.  This is 
compounded by complex data sets consisting of many 
items, each consisting of many variables. In the effort to 
make sense of these multivariate data by thinking of 
them in spatial terms, they are referred to as 
multidimensional data. 

When data are presented graphically on a spatial 
substrate, interesting features such as patterns, trends and 
Gestalt forms might be revealed. A very popular means 
of achieving this is to plot the data as points against the 
axes of a two-dimensional scatterplot.  If the data 
dimensionality is relatively low, then scatterplot points 
can be rendered as glyphs, whose positions denote two 
dimensions, and whose visual properties encode the 
remaining dimensions in retinal variables such as shape, 
size or colour [4]. However, when the data 
dimensionality is too high to directly map to position and 
other visual structures, the data must be transformed in 
such a way that they are represented by a lower number 
of derived dimensions that retain as much of the original 
information as possible. This is known as the challenge 
of dimension reduction. 

Many researchers have developed dimension 
reduction algorithms, sometimes referred to as layout 
algorithms, each with different benefits and drawbacks. 
Some algorithms are effective at reducing dimensionality 



 

while preserving the high dimensional relationships but 
are too inefficient to scale up to large data sets. 
Conversely, some algorithms might be fast but are 
unable to accurately capture the original information and 
therefore fail to display certain interesting patterns. To 
address this, our previous work has investigated the 
diligent combination of algorithms to minimise the 
individual weaknesses while utilising their strong points 
[10, 11].  

HIVE is a system developed for the user to visualise 
data and for the designer to develop and profile 
visualisation algorithms. It is a toolkit of algorithmic 
components that can be used either individually, or 
integrated into hybrid algorithmic models. As well as 
being a data exploration environment, HIVE is also a 
useful system within which to profile and evaluate 
hybrid algorithms.  Several novel modules have been 
implemented to measure and display performance 
characteristics of other HIVE modules.  Such profiling 
modules permit algorithm evaluation to be interactively 
coupled with the algorithms being run; visual metaphors 
used for the interconnection of algorithmic components 
can also be used in linking together profiling tools.  The 
decision as to which properties of algorithmic 
performance to measure can be made and altered at run-
time. 

Various modules have been developed, for simple 
measurements such as run time and metrics of layout 
quality, and for more complex analysis and profiling.  
Several of these components are shown in Figure 1, 
which depicts an FDP routine being used to create a 2D 
scatterplot layout (top right) of a synthetic data set 
representing a 3D cube.  A tool is added to measure 
stress – a metric measuring the residual sum of squared 
error between high dimensional and layout distances [9].  
Stress is measured after each iteration of the FDP and 
graphed in a chart component, which can be used in 
conjunction with the scatterplot to determine the extent 
to which the FDP is approaching convergence.  A 
Shepard diagram [13] in the bottom right may also be 
used in evaluating the quality of layout obtained. Each 
point in this diagram corresponds to a pair of objects, 
plotting their high dimensional distance against their 
layout distance. Functionality is provided to support 
brushing and linking between the Shepard diagram and 
scatterplot layout.  A user can therefore select a distance 
in the Shepard diagram, and be shown the corresponding 
objects in the scatterplot.  Distances far from the 
diagonal can alert a user to areas of the layout (perhaps 
regions of local minima) that may benefit from further 
processing. 

Data are loaded from the multiple runs module in 
the top left of the figure.  This module can coordinate 
multiple executions of algorithms, taking a series of 
commands from the user and passing the appropriate 
parameters for each run to various algorithmic stages.  

Used with the chart component, this allows models to be 
compared over a variety of data sets and under various 
algorithmic conditions, with results being automatically 
charted as part of an unsupervised process. 

 

Figure 1:  An example of several profiling 
modules in HIVE, applied to an FDP routine 
running on a synthetic 3D cube.  The FDP 
produces 2D coordinates, used to plot the 
layout in the top right image.  A stress module 
is connected to the FDP output, and feeds into 
the chart in the bottom left.  Thereby, stress 
may be measured and plotted after each 
iteration.  Finally, the Shepard diagram in the 
bottom right plots high dimensional distances 
against low dimensional (layout) distances. 

 
  
3. Interactive addition of energy 
 

In Section 2 a force-directed placement routine is 
used to produce a layout. FDP is an iterative process in 
which objects are initially placed at random and 
discrepancies between inter-point distances in the 2D 
layout and the high-D (variable) space are modelled as 
forces. Take for example two points that are much closer 
together in the layout than in the high-D space; these two 
points will experience a repulsive force and the 
algorithm will try to push them further apart. 

Iterative layout techniques can sometimes find 
locally optimal configurations, but not necessarily 
globally optimal ones.  A simple example of this is a 
layout becoming ‘twisted’, as illustrated in Figure 2, 
showing a 2-dimensional data set representing a 
rectangle.  Objects at either side of the twist are locally 



 

well positioned, but the global structure of the layout is 
flawed.  

Iterative models can often recover from such 
minima.  An example such as the one illustrated in 
Figure 2 would almost certainly reach a globally optimal 
state eventually.  As the section below the fold has fewer 
objects than the one on top, it is this bottom section that 
is more likely to conform to the top half’s orientation. 
This recovery process, however, can be very time 
consuming.  Since the objects in the lower section are 
well positioned in their local neighbourhoods, and 
reasonably well positioned in regard to the distant 
objects, there will be only very small composite forces 
pulling them in the correct direction. 

 

 
Figure 2:  An FDP routine executing on a set of 
rectangular data has found a local minimum; 
the layout has become twisted.  Since 
relationships are well represented within 
regions at either side of the folded area and the 
‘errant objects’ are roughly well-positioned in 
regard to distant objects, composite force 
vectors acting on them will be small. As such, 
the layout may take a long time to unfold. 
 

Figure 3 shows graphs of stress per iteration for two 
executions of an iterative FDP model on the data set 
illustrated in Figure 2.   Both graphs have the general 
shape associated with such models: stress rises for the 
first few iterations as large forces are generated between 
objects in initial random positions.  Thereafter, stress 
decreases as the layout reaches its conclusion. The first 
case shows an average run, where the model proceeds 
steadily towards its final configuration.   As the data set 
is two-dimensional, the stress of the final layout should 
reach zero, and this is achieved after 52 iterations.  The 
second graph in Figure 3 illustrates a case where the 
layout has developed a twist as in Figure 2.  This graph 
shows a period of very slow stress decrease of around 
200 iterations, before it finally moves towards zero stress 
after 280 iterations.  This ‘plateau’ represents the period 

where the fold has occurred, and the system slowly 
becomes untangled.  Although the layout is clearly 
flawed, stress is relatively low during this period, as 
most of the inter-object relationships are well 
represented. 
 

Figure 3: Two graphs of stress over iterations 
for FDP executing on the 2D rectangular data.  
With 2D data, a layout with stress of zero is 
possible.  In the first case, the algorithm 
proceeds without a hitch and completes after 52 
iterations.  The second chart, with a different 
horizontal scale, shows a long ‘plateau’ starting 
at 40 iterations as the layout becomes twisted. 
It eventually reaches zero stress after 280 
iterations. 
 

A user observing layout formation may find this 
very frustrating.  It may be readily apparent to an expert 
user that such a fold has occurred, but there is no way of 
interacting with the process to untangle the layout.  The 
user therefore has the option of watching the layout 
attempt to unfold, or abandoning execution and 
restarting. 

We propose novel functionality to allow interaction 
with the layout in such situations, to help accelerate the 
untangling process. Through interacting with the 
scatterplot window, we allow users to add energy to 
localised regions of the system to increase the forces 
acting on the misplaced objects.  The additional energy 
increases the magnitude of forces acting upon each 
object, encouraging wayward regions of the layout to 
reach their destinations more rapidly.  Conceptually, this 
is similar to throwing a pebble into a pond.  Energy is 



 

added to a specific location, and slowly dissipates with 
distance from the point of ‘impact’. 

Controls are provided to allow the user to specify 
the location at which to add energy, as well as the 
amount of energy and the range over which it should act.  
The user double clicks on the target area of the 
scatterplot. A red circle is drawn, representing the range, 
which steadily grows until the mouse button is released.  
The user may first zoom in, in order to gain fine-grain 
control of the layout area—and therefore the objects—to 
which the energy should be applied.  Conversely, by 
zooming out, a large area of the layout may be targeted 
quickly.  The amount of energy to add may be specified 
via a slider at the bottom of the scatterplot component.  
These controls are illustrated in Figure 4. 

 

 
Figure 4:  An illustration of the controls 
provided to add energy to a layout.  Double 
clicking on the layout draws a circle, which 
steadily increases in size until mouse release, 
allowing specification of the area to which 
energy should be added.  A slider at the bottom 
of the panel controls the amount of energy 
applied.   By zooming in, as in the image on the 
right, finer grain control may be exerted. 
 

On mouse release, the desired amount of energy is 
added to the layout at the specified location.  Energy is at 
its peak at the original location of the user’s double click 
and reduces with distance, reaching zero on the edge of 
the circle.  

Figure 5 illustrates the usefulness of this 
functionality. A user may detect that a fold has occurred 
in an FDP layout (after 70 iterations in this example).  It 
was illustrated in Figure 3 how many iterations it may 
take to resolve such an occurrence.  The user therefore 
adds energy to a relatively local area within the fold.  
The energy added to these points scatters them, leaving a 
hole in the layout after 75 iterations.  Since these objects 
are relatively few, however, this does not make a great 

impact on the general layout structure, and the wayward 
objects are soon pulled back into position.  Hereafter, the 
objects will move towards their ideal locations faster, as 
the composite forces acting upon them will be greater.  
The layout has been allowed to ‘bounce out’ of its local 
minimum. After 85 iterations, the fold has almost been 
resolved, and after 95 the layout is near completion. 

This process is similar to simulated annealing [8], 
which is an automated process based upon a metaphor of 
the movement of atoms in a cooling metal.  The 
distinction here, however, is that the user is at the centre 
of the operation.  Energy is added at the user’s 
discretion, rather than in accordance with a cooling 
schedule.  Another distinction is that energy is added to 
localised regions, rather than globally, so settled areas of 
a layout can be left unperturbed. 

 

 
Figure 5: A twisted layout shown at 5 iteration 
intervals (specified top right in each frame). 
Energy is added to the twisted region after 70 
iterations, allowing the rapid convergence of 
the model. 

 
While the ability to help the layout bounce out of local 
minima is clearly beneficial, it is expected that detecting 
the minima by visual examination of the layout will be a 
challenge even for expert users. We have implemented 
an interactive Shepard diagram to help in this regard. As 
described in Section 2, the Shepard diagram plots all, or 
a sample of, pair-wise high- dimensional distances 
against their representative low-dimensional distances.  
In an ideal layout, the low-D distances will be equal to 
the high-D distances and the Shepard plot would depict a 
straight 45-degree line of positive slope. However, in the 
typical case with real data, it is impossible to gain such a 
layout and as a result the discrepancies between the true 
distances and the layout distances appear as points in the 
Shepard diagram that deviate from the 45-degree slope. 



 

 
The Shepard diagram is traditionally a static 

presentation; the user is afforded no interaction with it. 
However, it has been realised that by supplementing it 
with brush and link functionality, we can link it to a 
layout of high-dimensional data to identify the points 
that contribute to local minima. Figure 6 shows how a 
Shepard plot has been linked to a layout similar to that 
shown in Figure 2. It can be clearly seen that there are 
some points deviating from the 45-degree slope of the 
Shepard diagram. Some of these points have been 
selected in the diagram and as a result, the 
corresponding points in the layout are highlighted. This 
tells us where to add energy to the layout to help dispel 
the local minimum and allow the layout to converge at a 
faster pace. 

The force-directed placement algorithm is based 
upon the intuitive analogy of forces converging to 
equilibrium in a mechanical system. In compliance with 
this simple model, this new method of interactively 
adding energy to the system provides an intuitive means 
of user intervention to free it from local minima.  
 
4. Collation of algorithmic profiling results 

 
A new component has been designed to collate and 

visualise the results of numerous profiling tools 
descried in Section 2, drawing them together into one 
unit.  Figure 7 illustrates a simple case, where a 
Multiple Runs module controls several executions of an 
FDP routine.  The algorithm is run on data sets ranging 

in size between 3000 and 9000 objects, and for varying 
amounts of iterations.  The collation module receives 
values for the data set size, number of iterations 
performed, stress and run time.  These are then 
displayed in a table component, with each row 
corresponding to one algorithmic run. 

 
Figure 7: An illustration of the process by 
which results of algorithmic profiling may be 
collated. Several runs of a FDP model are 
performed, with the results of each collected in 
the collation component and displayed in a 
table component. Each row represents one 
execution of the FDP model. 

 

 

Figure 6: A twist has become apparent in the 2D layout as shown in the left image. This is reflected 
by a number of points deviating from the diagonal of the Shepard plot on the left. Points that lie 
above the diagonal represent points in the layout that are too close together. Upon selecting some 
of these points (highlighted in yellow and circled for clarity) in the Shepard plot, the corresponding 
points are highlighted in the layout providing guidance as to where to interactively add energy as 
described earlier. 



 

It could be seen from this example that the 
collation module could gather a number of values into a 
multidimensional data set, and that the output from the 
module could therefore be treated in a manner similar to 
a data source component; it could be used as input to 
visualisation algorithms.  It would be possible, 
therefore, to create a layout of results, within which to 
search for patterns.  This brings about the possibility of 
evaluating a set of visualisation techniques, using these 
same techniques to explore the results.  This is 
achievable within the same interaction framework, and 
may be performed at run time. 

The following example (Figure 8) illustrates this 
concept.  A set of algorithmic modules have been 
connected together.  The configuration represents the 
algorithm presented in [10].  The evaluation section of 
that paper described the comparison of a novel 
algorithm with two competitor techniques.  Details of 
the algorithms are unimportant for this example; suffice 
to say that they were hybrid models, each composed of 
several stages.  Run times and stress are measured at 
various stages, and these results are passed to a 
collation module, along with information on data size 
and algorithmic parameters.  Six runs are performed 
with each set of conditions. 

 

 
Figure 8: The data flow carries performance 
characteristics of several stages of a hybrid 
layout algorithm. The collation module gathers 
the information and passes it to histogram and 
FDP modules. 

 
Having gathered the data from the various profiling 

modules, the collation module feeds into an FDP model 
to analyse the results.  The scatterplot in the lower right 
corner (and reproduced for clarity in Figure 9), then, 
represents each algorithmic test run as a visualised 
object. This may be used in combination with the 

histogram in the lower left to explore the profiling 
results. 

The interactive controls at the bottom of the 
histogram component allow each dimension of the data 
to be examined in turn. Which input dimension to graph 
may be selected from a drop-down list (in the figure, 
post-interpolation stress is selected).  The double-ended 
slider may then be used to search over the range of this 
dimension, with the scatterplot view updating to 
highlight only the objects fulfilling that range criterion.   
In the figure, we see that the objects with low values for 
stress appear towards the top of the scatterplot.   

Applying this process to each input in turn, we 
ascertain that the generated layout is essentially two 
dimensional.  High correlations exist between the data 
size and run times for the various stages, and these 
values correspond roughly to the horizontal placement 
in the layout. The orthogonal dimension corresponds to 
layout stress, as illustrated in Figure 8 with the 
histogram. 

 

 
Figure 9: The layout from Figure 8 reproduced 
for clarity.  
 

One exception to this pattern is the time taken for 
the final stage of the algorithm.  It was noted following 
interaction with the histogram component that this input 
dimension corresponded to the vertical layout axis.  The 
final algorithmic stage is a force directed placement 
routine. This stage executes for as long as necessary to 
reduce stress to a specific threshold, and therefore its 
run time is more dependent on the stress level at 
completion of the previous stage. 

The layout is coloured over data set size.  Eight 
different sizes of data were used in the experiment, so 
each data point is one of eight distinct colours, the 
brighter shades representing larger sets. It may be seen 
that the objects representing the smaller data sets tend to 
appear in lines, forming bands of colour.  As the data 
size increases, however, this effect becomes less 
pronounced.  It may also be seen that the layout appears 
to spread out as data size increases.  This may be 
explained by the fact that the smaller sets have very 
similar run times for the various components.  As the 



 

data size increases, and run times become longer, the 
run times exhibit greater variance. 

For clarity, this example used a separate FDP 
module to explore results.  However, it is worthy of 
note that the collated data could have been fed back into 
the original components i.e. the algorithm that produced 
the data could itself be used to visualise the results. 

5. Future Work 

The paper has described new components for data 
exploration and algorithmic profiling – tools for both 
visualisation users and designers.  We are currently 
investigating ways of using such tools to automatically 
detect when iterative layout routines fall into local 
minima. Stress levels and charting components can 
already be used to see when such circumstances arise, 
and HIVE affords brushing and linking between layouts 
and certain profiling tools to support users in detecting 
localised areas that make a large contribution to layout 
stress. However, it would be of benefit to support 
unsupervised detection of such conditions, thereby 
allowing HIVE to automatically attempt to resolve 
certain areas, or extract them for further processing. 

We will also continue to examine our novel 
approach to allowing layout algorithms to reflect upon 
themselves, as highlighted in Section 4.  An algorithm 
can detect patterns in performance characteristics, with 
respect to different input data sets and under different 
algorithmic conditions.  This therefore suggests the 
possibility of using this analysis to automatically 
modify algorithmic parameters to improve performance. 

6. Conclusions 

We have presented two components that enrich the 
set of tools available in HIVE for analysing data and for 
analysing the visualisation process. We have 
demonstrated a new tool for allowing the visualisation 
user to intervene in previously unsupervised FDP 
algorithms. We have also described a tool for allowing 
the algorithm designer to profile solutions.  

The challenges presented by the hybrid algorithmic 
approach to dimension reduction include determining 
which algorithmic components should be combined and 
in what order, as well as how to assess their 
performance. The advantages of the combination of 
algorithms, and the challenges they present motivate us 
in pursuing this rich avenue of research. 

Visualisation and data analysis is often a complex 
task and, as such, is itself a potential application area 
for InfoVis tools.  Our research develops and explores 
responses to this, applying analysis techniques to the 
components, processes and parameters of a visualisation 
system.  This, we suggest, is a promising way to afford 
better understanding and control of the visualisation 

system and, in turn, deepen insight into the visualised 
information itself. 
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