

Visualisation Techniques for Users and Designers of Layout Algorithms

Greg Ross, Alistair Morrison and Matthew Chalmers
Department of Computing Science, University of Glasgow

{gr, morrisaj, matthew}@dcs.gla.ac.uk

Abstract

Visualisation systems consisting of a set of

components through which data and interaction
commands flow have been explored by a number of
researchers. Such hybrid and multistage algorithms can
be used to reduce overall computation time, and to
provide views of the data that show intermediate results
and the outputs of complementary algorithms. In this
paper we present work on expanding the range and
variety of such components, with two new techniques for
analysing and controlling the performance of
visualisation processes. While the techniques presented
are quite different, they are unified within HIVE: a
visualisation system based upon a data-flow model and
visual programming. Embodied within this system is a
framework for weaving together our visualisation
components to better afford insight into data and also
deepen understanding of the process of the data’s
visualisation. We describe the new components and offer
short case studies of their application. We demonstrate
that both analysts and visualisation designers can
benefit from a rich set of components and integrated
tools for profiling performance.

Categories and Subject Descriptors (according to ACM
CCS): H.5.2 [Information Interfaces and Presentation]:
User Interfaces; I.3.6 [Computer Graphics]:
Methodology and Techniques – Interaction techniques

1. Introduction

As the field of Information Visualisation has
matured, its tools and techniques have grown in number
and variety. Driven by application areas that demand
interactive exploration of large amounts of data, and
exploiting advances in the hardware available for
display, processing and storage, new methods of
interaction and analysis are continually being added to
those we have available. Designers and users are faced

with an increasingly large set of alternatives and
combinations, and this may be challenging or
problematic at times. However, this growing set of tools
also opens up possibilities for complementary views of
data, and more efficient forms of analysis. Visualisation
traditionally concerns the richer interpretation of data
that comes from revealing and exploring data patterns,
combinations and structures, but there is also a line of
work that deals with linking and combining tools and
algorithms so as to support such interpretation. Our
research aims to contribute to this latter line of work by
presenting a set of tools for information visualisation
within a framework for combining them.

Our recent work builds on hybrid algorithms such as
those described in [10] and [11], which produce 2D
scatterplot views of multivariate data, where point
proximities match as closely as possible those in the
original high-dimensional space. The presented
algorithms were hybrid in nature, involving a
sequentially applied set of techniques that enabled faster
layout of relatively large data sets. Use of
computationally expensive algorithms was restricted to a
subset of the data to form a basis for comparatively
inexpensive interpolation of the rest of the data. This
flow of selected subsets of the data through the sequence
of algorithmic components also influenced the design of
a graphical environment for selecting and combining
visualisation components, called HIVE (Hybrid
Information Visualisation Environment) [12]. HIVE is
targeted at both the user and the designer of layout
algorithms and draws upon design approaches such as
dataflow architectures [15] and visual programming [7].
This allows the intuitive depiction of algorithmic and
display components as nodes in a graph where the arcs
represent either the flow of data between components, or
interconnection of components to support brushing and
linking [1, 2]. It should be noted that visual
programming is related to algorithm animation and
program visualisation [3, 14], but the distinction between
them is that program visualisation is generally applied to
help understand algorithms and programs that have been

created in a conventional textual programming language.
However, visual programming entails program creation
solely by graphical constructs.

In this paper we report two new HIVE components.
One component is designed for the data analyst to enrich
an existing view and one is for the designer of layout
algorithms, offering facilities for evaluation and
profiling of visualisation applications built within HIVE.
The process of dimension reduction is generally
unsupervised and until recently there have been few
attempts at providing support for user-intervention [16].
The first of our new components is for the user and
enhances an existing view to provide the user with
interactive functionality. This work focuses on force-
directed placement (FDP) algorithms – a family of
techniques that simulate physical forces acting on
objects to iteratively produce layouts from an initial
random starting configuration [5, 6]. We postulate that a
benefit of iterative solutions is the animation of the
layout process, which provides feedback on the
algorithm’s progress. A traditional shortcoming is that
the model might occasionally converge to a local
minimum – a non-globally optimal configuration. The
component presented in this paper provides the user with
the ability to interactively control the addition of energy
into specific parts of the model to help it break free from
local minima. We also show how to interactively
identify such minima.

While the first new component helps the user to
intervene in the process of generating a layout of data,
the second new component is concerned with the
retrospective analysis of algorithmic performance.
Algorithms for creating layouts of multidimensional data
often behave differently given data sets of varying
dimensionality and cardinality. These algorithms can be
assessed according to the quality of the layout as well as
run time. Previous work has shown that hybrid
algorithms can be efficient in generating layouts.
However, the hybrid combinations are often determined
heuristically and therefore the effects of different
algorithmic stages on run times and layout quality might
not be well known. To address this and provide the
algorithm designer with some insight into the effects of
different hybrid combinations, a new HIVE component
has been developed to collate the results from batch runs
of algorithms with different parameter settings and on
different data sets. The results of these batch runs are,
themselves, multidimensional data and therefore lend
themselves to visualisation via the algorithms upon
which they report.

We aim to allow the designers and users of
visualisation algorithms to use such sophisticated
interaction techniques to assess the performance and
variability of the algorithms themselves, thus affording
better understanding of the overall system and insight
into the data being visualised.

In the next section of this paper we discuss the
motivation behind the algorithms we have created and
describe HIVE, the environment in which they are
developed, used and profiled. Section 3 provides details
on the interactive technique for addition of energy during
the layout process. In Section 4, we go on to illustrate
how the algorithm designer can benefit from algorithm
profiling. Throughout, we provide brief case studies
outlining the use of the extended version of HIVE to
analyse data sets and the process of visualisation. We
offer some suggestions for future work before
concluding the paper with a summary, and the overall
direction of our research.

2. Algorithm profiling and HIVE

To gain actionable knowledge from the ever-
increasing sea of data facing analysts, data must be
represented in such a way that any pertinent information
is made available as quickly as possible. It is well
known that of all the senses, the human visual system
has by far the greatest bandwidth for communicating
information to the brain and it is for this reason that data
are often represented graphically so as to appeal to the
human’s visual perception [4].

The challenge, however, is in graphically depicting
abstract data. Abstract data are those observations or
measurements that have no direct physical derivation
and therefore do not immediately lend themselves to the
spatial mappings required for visual rendering. This is
compounded by complex data sets consisting of many
items, each consisting of many variables. In the effort to
make sense of these multivariate data by thinking of
them in spatial terms, they are referred to as
multidimensional data.

When data are presented graphically on a spatial
substrate, interesting features such as patterns, trends and
Gestalt forms might be revealed. A very popular means
of achieving this is to plot the data as points against the
axes of a two-dimensional scatterplot. If the data
dimensionality is relatively low, then scatterplot points
can be rendered as glyphs, whose positions denote two
dimensions, and whose visual properties encode the
remaining dimensions in retinal variables such as shape,
size or colour [4]. However, when the data
dimensionality is too high to directly map to position and
other visual structures, the data must be transformed in
such a way that they are represented by a lower number
of derived dimensions that retain as much of the original
information as possible. This is known as the challenge
of dimension reduction.

Many researchers have developed dimension
reduction algorithms, sometimes referred to as layout
algorithms, each with different benefits and drawbacks.
Some algorithms are effective at reducing dimensionality

while preserving the high dimensional relationships but
are too inefficient to scale up to large data sets.
Conversely, some algorithms might be fast but are
unable to accurately capture the original information and
therefore fail to display certain interesting patterns. To
address this, our previous work has investigated the
diligent combination of algorithms to minimise the
individual weaknesses while utilising their strong points
[10, 11].

HIVE is a system developed for the user to visualise
data and for the designer to develop and profile
visualisation algorithms. It is a toolkit of algorithmic
components that can be used either individually, or
integrated into hybrid algorithmic models. As well as
being a data exploration environment, HIVE is also a
useful system within which to profile and evaluate
hybrid algorithms. Several novel modules have been
implemented to measure and display performance
characteristics of other HIVE modules. Such profiling
modules permit algorithm evaluation to be interactively
coupled with the algorithms being run; visual metaphors
used for the interconnection of algorithmic components
can also be used in linking together profiling tools. The
decision as to which properties of algorithmic
performance to measure can be made and altered at run-
time.

Various modules have been developed, for simple
measurements such as run time and metrics of layout
quality, and for more complex analysis and profiling.
Several of these components are shown in Figure 1,
which depicts an FDP routine being used to create a 2D
scatterplot layout (top right) of a synthetic data set
representing a 3D cube. A tool is added to measure
stress – a metric measuring the residual sum of squared
error between high dimensional and layout distances [9].
Stress is measured after each iteration of the FDP and
graphed in a chart component, which can be used in
conjunction with the scatterplot to determine the extent
to which the FDP is approaching convergence. A
Shepard diagram [13] in the bottom right may also be
used in evaluating the quality of layout obtained. Each
point in this diagram corresponds to a pair of objects,
plotting their high dimensional distance against their
layout distance. Functionality is provided to support
brushing and linking between the Shepard diagram and
scatterplot layout. A user can therefore select a distance
in the Shepard diagram, and be shown the corresponding
objects in the scatterplot. Distances far from the
diagonal can alert a user to areas of the layout (perhaps
regions of local minima) that may benefit from further
processing.

Data are loaded from the multiple runs module in
the top left of the figure. This module can coordinate
multiple executions of algorithms, taking a series of
commands from the user and passing the appropriate
parameters for each run to various algorithmic stages.

Used with the chart component, this allows models to be
compared over a variety of data sets and under various
algorithmic conditions, with results being automatically
charted as part of an unsupervised process.

Figure 1: An example of several profiling
modules in HIVE, applied to an FDP routine
running on a synthetic 3D cube. The FDP
produces 2D coordinates, used to plot the
layout in the top right image. A stress module
is connected to the FDP output, and feeds into
the chart in the bottom left. Thereby, stress
may be measured and plotted after each
iteration. Finally, the Shepard diagram in the
bottom right plots high dimensional distances
against low dimensional (layout) distances.

3. Interactive addition of energy

In Section 2 a force-directed placement routine is
used to produce a layout. FDP is an iterative process in
which objects are initially placed at random and
discrepancies between inter-point distances in the 2D
layout and the high-D (variable) space are modelled as
forces. Take for example two points that are much closer
together in the layout than in the high-D space; these two
points will experience a repulsive force and the
algorithm will try to push them further apart.

Iterative layout techniques can sometimes find
locally optimal configurations, but not necessarily
globally optimal ones. A simple example of this is a
layout becoming ‘twisted’, as illustrated in Figure 2,
showing a 2-dimensional data set representing a
rectangle. Objects at either side of the twist are locally

well positioned, but the global structure of the layout is
flawed.

Iterative models can often recover from such
minima. An example such as the one illustrated in
Figure 2 would almost certainly reach a globally optimal
state eventually. As the section below the fold has fewer
objects than the one on top, it is this bottom section that
is more likely to conform to the top half’s orientation.
This recovery process, however, can be very time
consuming. Since the objects in the lower section are
well positioned in their local neighbourhoods, and
reasonably well positioned in regard to the distant
objects, there will be only very small composite forces
pulling them in the correct direction.

Figure 2: An FDP routine executing on a set of
rectangular data has found a local minimum;
the layout has become twisted. Since
relationships are well represented within
regions at either side of the folded area and the
‘errant objects’ are roughly well-positioned in
regard to distant objects, composite force
vectors acting on them will be small. As such,
the layout may take a long time to unfold.

Figure 3 shows graphs of stress per iteration for two
executions of an iterative FDP model on the data set
illustrated in Figure 2. Both graphs have the general
shape associated with such models: stress rises for the
first few iterations as large forces are generated between
objects in initial random positions. Thereafter, stress
decreases as the layout reaches its conclusion. The first
case shows an average run, where the model proceeds
steadily towards its final configuration. As the data set
is two-dimensional, the stress of the final layout should
reach zero, and this is achieved after 52 iterations. The
second graph in Figure 3 illustrates a case where the
layout has developed a twist as in Figure 2. This graph
shows a period of very slow stress decrease of around
200 iterations, before it finally moves towards zero stress
after 280 iterations. This ‘plateau’ represents the period

where the fold has occurred, and the system slowly
becomes untangled. Although the layout is clearly
flawed, stress is relatively low during this period, as
most of the inter-object relationships are well
represented.

Figure 3: Two graphs of stress over iterations
for FDP executing on the 2D rectangular data.
With 2D data, a layout with stress of zero is
possible. In the first case, the algorithm
proceeds without a hitch and completes after 52
iterations. The second chart, with a different
horizontal scale, shows a long ‘plateau’ starting
at 40 iterations as the layout becomes twisted.
It eventually reaches zero stress after 280
iterations.

A user observing layout formation may find this
very frustrating. It may be readily apparent to an expert
user that such a fold has occurred, but there is no way of
interacting with the process to untangle the layout. The
user therefore has the option of watching the layout
attempt to unfold, or abandoning execution and
restarting.

We propose novel functionality to allow interaction
with the layout in such situations, to help accelerate the
untangling process. Through interacting with the
scatterplot window, we allow users to add energy to
localised regions of the system to increase the forces
acting on the misplaced objects. The additional energy
increases the magnitude of forces acting upon each
object, encouraging wayward regions of the layout to
reach their destinations more rapidly. Conceptually, this
is similar to throwing a pebble into a pond. Energy is

added to a specific location, and slowly dissipates with
distance from the point of ‘impact’.

Controls are provided to allow the user to specify
the location at which to add energy, as well as the
amount of energy and the range over which it should act.
The user double clicks on the target area of the
scatterplot. A red circle is drawn, representing the range,
which steadily grows until the mouse button is released.
The user may first zoom in, in order to gain fine-grain
control of the layout area—and therefore the objects—to
which the energy should be applied. Conversely, by
zooming out, a large area of the layout may be targeted
quickly. The amount of energy to add may be specified
via a slider at the bottom of the scatterplot component.
These controls are illustrated in Figure 4.

Figure 4: An illustration of the controls
provided to add energy to a layout. Double
clicking on the layout draws a circle, which
steadily increases in size until mouse release,
allowing specification of the area to which
energy should be added. A slider at the bottom
of the panel controls the amount of energy
applied. By zooming in, as in the image on the
right, finer grain control may be exerted.

On mouse release, the desired amount of energy is
added to the layout at the specified location. Energy is at
its peak at the original location of the user’s double click
and reduces with distance, reaching zero on the edge of
the circle.

Figure 5 illustrates the usefulness of this
functionality. A user may detect that a fold has occurred
in an FDP layout (after 70 iterations in this example). It
was illustrated in Figure 3 how many iterations it may
take to resolve such an occurrence. The user therefore
adds energy to a relatively local area within the fold.
The energy added to these points scatters them, leaving a
hole in the layout after 75 iterations. Since these objects
are relatively few, however, this does not make a great

impact on the general layout structure, and the wayward
objects are soon pulled back into position. Hereafter, the
objects will move towards their ideal locations faster, as
the composite forces acting upon them will be greater.
The layout has been allowed to ‘bounce out’ of its local
minimum. After 85 iterations, the fold has almost been
resolved, and after 95 the layout is near completion.

This process is similar to simulated annealing [8],
which is an automated process based upon a metaphor of
the movement of atoms in a cooling metal. The
distinction here, however, is that the user is at the centre
of the operation. Energy is added at the user’s
discretion, rather than in accordance with a cooling
schedule. Another distinction is that energy is added to
localised regions, rather than globally, so settled areas of
a layout can be left unperturbed.

Figure 5: A twisted layout shown at 5 iteration
intervals (specified top right in each frame).
Energy is added to the twisted region after 70
iterations, allowing the rapid convergence of
the model.

While the ability to help the layout bounce out of local
minima is clearly beneficial, it is expected that detecting
the minima by visual examination of the layout will be a
challenge even for expert users. We have implemented
an interactive Shepard diagram to help in this regard. As
described in Section 2, the Shepard diagram plots all, or
a sample of, pair-wise high- dimensional distances
against their representative low-dimensional distances.
In an ideal layout, the low-D distances will be equal to
the high-D distances and the Shepard plot would depict a
straight 45-degree line of positive slope. However, in the
typical case with real data, it is impossible to gain such a
layout and as a result the discrepancies between the true
distances and the layout distances appear as points in the
Shepard diagram that deviate from the 45-degree slope.

The Shepard diagram is traditionally a static

presentation; the user is afforded no interaction with it.
However, it has been realised that by supplementing it
with brush and link functionality, we can link it to a
layout of high-dimensional data to identify the points
that contribute to local minima. Figure 6 shows how a
Shepard plot has been linked to a layout similar to that
shown in Figure 2. It can be clearly seen that there are
some points deviating from the 45-degree slope of the
Shepard diagram. Some of these points have been
selected in the diagram and as a result, the
corresponding points in the layout are highlighted. This
tells us where to add energy to the layout to help dispel
the local minimum and allow the layout to converge at a
faster pace.

The force-directed placement algorithm is based
upon the intuitive analogy of forces converging to
equilibrium in a mechanical system. In compliance with
this simple model, this new method of interactively
adding energy to the system provides an intuitive means
of user intervention to free it from local minima.

4. Collation of algorithmic profiling results

A new component has been designed to collate and

visualise the results of numerous profiling tools
descried in Section 2, drawing them together into one
unit. Figure 7 illustrates a simple case, where a
Multiple Runs module controls several executions of an
FDP routine. The algorithm is run on data sets ranging

in size between 3000 and 9000 objects, and for varying
amounts of iterations. The collation module receives
values for the data set size, number of iterations
performed, stress and run time. These are then
displayed in a table component, with each row
corresponding to one algorithmic run.

Figure 7: An illustration of the process by
which results of algorithmic profiling may be
collated. Several runs of a FDP model are
performed, with the results of each collected in
the collation component and displayed in a
table component. Each row represents one
execution of the FDP model.

Figure 6: A twist has become apparent in the 2D layout as shown in the left image. This is reflected
by a number of points deviating from the diagonal of the Shepard plot on the left. Points that lie
above the diagonal represent points in the layout that are too close together. Upon selecting some
of these points (highlighted in yellow and circled for clarity) in the Shepard plot, the corresponding
points are highlighted in the layout providing guidance as to where to interactively add energy as
described earlier.

It could be seen from this example that the
collation module could gather a number of values into a
multidimensional data set, and that the output from the
module could therefore be treated in a manner similar to
a data source component; it could be used as input to
visualisation algorithms. It would be possible,
therefore, to create a layout of results, within which to
search for patterns. This brings about the possibility of
evaluating a set of visualisation techniques, using these
same techniques to explore the results. This is
achievable within the same interaction framework, and
may be performed at run time.

The following example (Figure 8) illustrates this
concept. A set of algorithmic modules have been
connected together. The configuration represents the
algorithm presented in [10]. The evaluation section of
that paper described the comparison of a novel
algorithm with two competitor techniques. Details of
the algorithms are unimportant for this example; suffice
to say that they were hybrid models, each composed of
several stages. Run times and stress are measured at
various stages, and these results are passed to a
collation module, along with information on data size
and algorithmic parameters. Six runs are performed
with each set of conditions.

Figure 8: The data flow carries performance
characteristics of several stages of a hybrid
layout algorithm. The collation module gathers
the information and passes it to histogram and
FDP modules.

Having gathered the data from the various profiling

modules, the collation module feeds into an FDP model
to analyse the results. The scatterplot in the lower right
corner (and reproduced for clarity in Figure 9), then,
represents each algorithmic test run as a visualised
object. This may be used in combination with the

histogram in the lower left to explore the profiling
results.

The interactive controls at the bottom of the
histogram component allow each dimension of the data
to be examined in turn. Which input dimension to graph
may be selected from a drop-down list (in the figure,
post-interpolation stress is selected). The double-ended
slider may then be used to search over the range of this
dimension, with the scatterplot view updating to
highlight only the objects fulfilling that range criterion.
In the figure, we see that the objects with low values for
stress appear towards the top of the scatterplot.

Applying this process to each input in turn, we
ascertain that the generated layout is essentially two
dimensional. High correlations exist between the data
size and run times for the various stages, and these
values correspond roughly to the horizontal placement
in the layout. The orthogonal dimension corresponds to
layout stress, as illustrated in Figure 8 with the
histogram.

Figure 9: The layout from Figure 8 reproduced
for clarity.

One exception to this pattern is the time taken for
the final stage of the algorithm. It was noted following
interaction with the histogram component that this input
dimension corresponded to the vertical layout axis. The
final algorithmic stage is a force directed placement
routine. This stage executes for as long as necessary to
reduce stress to a specific threshold, and therefore its
run time is more dependent on the stress level at
completion of the previous stage.

The layout is coloured over data set size. Eight
different sizes of data were used in the experiment, so
each data point is one of eight distinct colours, the
brighter shades representing larger sets. It may be seen
that the objects representing the smaller data sets tend to
appear in lines, forming bands of colour. As the data
size increases, however, this effect becomes less
pronounced. It may also be seen that the layout appears
to spread out as data size increases. This may be
explained by the fact that the smaller sets have very
similar run times for the various components. As the

data size increases, and run times become longer, the
run times exhibit greater variance.

For clarity, this example used a separate FDP
module to explore results. However, it is worthy of
note that the collated data could have been fed back into
the original components i.e. the algorithm that produced
the data could itself be used to visualise the results.

5. Future Work

The paper has described new components for data
exploration and algorithmic profiling – tools for both
visualisation users and designers. We are currently
investigating ways of using such tools to automatically
detect when iterative layout routines fall into local
minima. Stress levels and charting components can
already be used to see when such circumstances arise,
and HIVE affords brushing and linking between layouts
and certain profiling tools to support users in detecting
localised areas that make a large contribution to layout
stress. However, it would be of benefit to support
unsupervised detection of such conditions, thereby
allowing HIVE to automatically attempt to resolve
certain areas, or extract them for further processing.

We will also continue to examine our novel
approach to allowing layout algorithms to reflect upon
themselves, as highlighted in Section 4. An algorithm
can detect patterns in performance characteristics, with
respect to different input data sets and under different
algorithmic conditions. This therefore suggests the
possibility of using this analysis to automatically
modify algorithmic parameters to improve performance.

6. Conclusions

We have presented two components that enrich the
set of tools available in HIVE for analysing data and for
analysing the visualisation process. We have
demonstrated a new tool for allowing the visualisation
user to intervene in previously unsupervised FDP
algorithms. We have also described a tool for allowing
the algorithm designer to profile solutions.

The challenges presented by the hybrid algorithmic
approach to dimension reduction include determining
which algorithmic components should be combined and
in what order, as well as how to assess their
performance. The advantages of the combination of
algorithms, and the challenges they present motivate us
in pursuing this rich avenue of research.

Visualisation and data analysis is often a complex
task and, as such, is itself a potential application area
for InfoVis tools. Our research develops and explores
responses to this, applying analysis techniques to the
components, processes and parameters of a visualisation
system. This, we suggest, is a promising way to afford
better understanding and control of the visualisation

system and, in turn, deepen insight into the visualised
information itself.

References

[1] Becker R., Cleveland W.: Brushing scatterplots.
Technometrics, 29, 2 (1987), 127–142.

[2] Boukhelifa N., Rodgers P.: A model and software system
for coordinated and multiple views in exploratory
visualization. Information Visualisation, 2, 4 (2004),
258–269.

[3] Brown, M. H. Zeus: A system for algorithm animation.
In Proceedings of IEEE 1991 Workshop on Visual
Languages, (1991), 4–9.

[4] Card S. K., Mackinlay J. D., Shneiderman B.:
Information Visualisation - using vision to think. Morgan
Kaufmann, 1999.

[5] Chalmers M.: A linear iteration time layout algorithm for
visualising high-dimensional data. In Proceedings of
IEEE Visualization 1996, San Francisco (1996), 127–
132.

[6] Eades P.: A heuristic for graph drawing. Congressus
Numerantium, 42 (1984), 149–160.

[7] Haeberli P.: ConMan: a visual programming language for
interactive graphics. Computer Graphics, 22, 4, (1988),
103–111.

[8] Kirkpatrick S., Gelatt C. D., Jr., Vecchi M. P.:
Optimization by simulated annealing. Science, 4598
(1983), 671–680.

[9] Kruskal J.: Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis.
Psychometrika, 29 (1964), 1–27.

[10] Morrison A., Chalmers M.: Improving hybrid MDS with
pivot-based searching. Information Visualization, 3, 2
(2004), 109–122.

[11] Morrison A., Ross G., Chalmers M.: Fast
multidimensional scaling through sampling, springs and
interpolation. Information Visualization, 2, 1 (2003), 68–
77.

[12] Ross G., Chalmers M.: A visual workspace for
constructing hybrid multidimensional scaling algorithms
and coordinating multiple views. Information
Visualization, 2, 4 (2003), 247-257.

[13] Shepard R.: The analysis of proximities:
multidimensional scaling with an unknown distance
function. Psychometrika, 27, 2 (1962), 125–140.

[14] Stasko, J. T. TANGO: A Framework and System for
Algorithm Animation. IEEE Comp., 23:27--39, 1990.

[15] Upson C., Faulhaber T., Kamens D., Laidlaw D.,
Schlegel D., Vroom J., Gurwitz R., Van Dam A.: The
application visualization system: a computational
environment for scientific visualization. IEEE Computer
Graphics and Applications. (1989), 30–42.

[16] Williams M., Munzner T.: Steerable, progressive
multidimensional scaling. IEEE Symposium on
Information Visualization (INFOVIS'04), (2004), 57–64.

